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Abstract

I investigate the impact of city-level excess mortality on former Brazilian president
Jair Bolsonaro’s electoral performance in 2022. First, I provide evidence of a robust
relationship between wind and COVID-induced excess mortality. In particular, cities
with relatively high wind speeds during COVID-19 waves present lower overall excess
mortality. Second, I use variations in wind timing as an instrumental variable for
city-level deaths and present a causal argument that increases in mortality decreased
Bolsonaro’s vote share in 2022. My most conservative estimates indicate that a one-
third reduction in excess mortality during the pandemic would have been enough to
secure a win for Bolsonaro. Using data on state governors’ reelection campaigns, I do
not find evidence that the results are driven by incumbency effects, and instead seem to
be idiosyncratic to the ex-president. I also present a novel method for the construction
of counterfactuals relying on neural networks, which provides results consistent with
those of my main analysis.
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1 Introduction

The COVID-19 pandemic left more than 700 thousand confirmed deaths in Brazil. Within
Latin America, the country had the second-highest official count of deaths per capita, trail-
ing behind Peru.
The particular severity of the pandemic in Brazil has been repeatedly linked to the then-
President Jair Bolsonaro’s rhetoric and attitudes. Ajzenman et al., 2023, in particular, use
mobile location data and an event-study design to show that cities with higher Bolsonaro
vote-share in 2018 disproportionately reduced social distancing relative to other cities as a re-
action to Bolsonaro’s speeches downplaying the extent of the health crisis. Cross-sectionally,
cities in which Bolsonaro obtained a higher share of the votes in 2018 incurred more deaths
during the pandemic (Cabral et al., 2021). Figueira and Moreno-Louzada, 2021 show that
this holds even within the municipality of São Paulo, leveraging variation at the electoral
district level.
Jair Bolsonaro took office in 2018. A retired military man and member of Congress (dep-
utado federal ) from 1991 to 2018, Bolsonaro was a polarizing figure. Early in the pandemic
(March 2020), he stated that the disease affected mostly the elderly, that there was no need
to close schools, and that due to his “history of athleticism”, he was not at risk. The posture
of the former president was met with resistance.
On April 15th, the supreme court in Brazil ruled that governors and mayors had freedom in
deciding for restrictive measures, such as lockdowns and whether (and which) establishments
should be closed1. This marked a shift in Brazilian politics and started tensions between
local governments’ sometimes stringent approaches and the lax federal ones.
Also in April, and similarly Donald Trump in the United States, he started promoting chloro-
quine as a potential treatment for COVID-19, despite the lack of consensus in the scientific
community2. There were a total of four health ministers during Bolsonaro’s administration,
three in the first year of the pandemic alone. The first two were fired due to disagreements
over chloroquine and social distancing.
Around this time, when asked about pandemic deaths, his statements were inflammatory:
“I am not a gravedigger”, he said. “So what? What do you want me to do?”.
In defending that the pandemic was an overblown issue, he said that Brazil was a “páıs
de maricas”3, to imply that people were cowards for fearing the pandemic. When Pfizer
announced the results of its first successful clinical trials for their vaccine, Bolsonaro said
that “if you turn into an alligator [by taking the vaccine], it is your problem”.
A scandal broke out in May of 2021 when it became public that the Brazilian government
ignored Pfizer’s attempts to negotiate a vaccine deal already in August 2020.
This was confirmed in (and fueled) the ongoing parliamentary commission of inquiry - the
CPI da COVID -, which was installed to investigate irregularities in the government’s han-
dling of the pandemic, promotion of and investment of public funds on ineffective medicines,
and dismissal of health officials that disagreed with the president. The CPI also received
a dossier from whistleblowers which indicated the government was linked to irregular clini-
cal trials made by the insurance company Prevent Senior. These included the testing and

1Note that the federal government still had the power to establish measures, but not to revoke local ones.
2Axfors et al., 2021 eventually showed no benefits from chloroquine in the treatment against COVID-19.
3Roughly translates to “a country of homosexuals”.
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administration of the medicines promoted by Bolsonaro, such as chloroquine, azithromycin
and ivermectin. The company was also accused of hiding COVID-19 deaths by changing the
victims’ cause of death.
Given the highly publicized nature of these events and Bolsonaro’s insistence on minimiz-
ing the pandemic, one can expect them to affect voting behavior. In 2022, Jair Bolsonaro
became the first president in the post-dictatorship era to lose a reelection campaign4. Luiz
Inácio Lula da Silva, from the worker’s party (PT), amassed 50.9% of valid votes and took
office on January 1st, 2023.
Though it is virtually impossible to reliably estimate a counterfactual election where Bol-
sonaro’s political choices and his handling of the pandemic were different, one may question,
given his choices, whether variations in COVID mortality induced people to change their
beliefs about and approval of the ex-President.
I will proceed as follows. For the remainder of the introduction, I formalize my research
question and briefly review works related to mine. In section (2), I present the data sources,
and proceed to establish a robust relationship between wind and excess mortality during
the pandemic in section (3). In particular, I show that places with relatively high wind
speeds during national COVID waves incurred fewer overall deaths. These results hold ex-
clusively in 2021 (whereas the pandemic started in 2020). I attempt to explain this pattern
through changes in the COVID variant profile in Brazil and changes in behavior. Since
weather-related instruments are often problematic due to spatial dependencies, I propose a
recentering procedure inspired by Borusyak and Hull, forthcoming. I present my main results
in (4). I find that every one excess death per thousand caused roughly a 1 to 3% decrease in
Bolsonaro’s vote share. Furthermore, a one-third reduction in excess mortality during the
pandemic would have been enough to flip the election results, securing a win for Bolsonaro.
Reassuringly, my instrument is not related to results of previous presidential elections. In
(5), I leverage the fact that governors had a substantial role in pandemic policy-making to
evaluate whether my results could be explained by incumbency effects. I do not find evi-
dence for this mechanism. Section (6) lists my robustness checks. Finally, (7) introduces a
novel method for constructing counterfactuals based on graph attention networks. Results
are consistent with the preceding sections. Section (8) concludes.

1.1 Research question and challenges

What was the effect of COVID deaths at the city level on Bolsonaro’s electoral performance
in the 2022 elections? Formally, my goal is to estimate β in:

∆i = α + β Excess mortalityi + δXi + εi (1)

Where ∆i is the difference in the PT’s5 runoff vote-share from 2018 to 2022, Excess mortalityi
is the number of yearly deaths per thousand above a linear extrapolation of the trend of

4Fernando Collor was impeached before he had the chance to run for reelection.
5The PT has been present in every runoff for the presidential elections since 2002, which allows me to

observe each municipality’s electoral preferences over time. In 2022 (and 2018), Bolsonaro’s vote share is
simply 1 minus PT’s vote share (in 2018, PT’s candidate was Fernando Haddad).
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deaths in city i in 20216, and Xi is a matrix collecting potentially unobservable/omitted
confounders. In appendix (9.1), I plot the population-weighted average excess mortality
across Brazilian cities over time.
Even if one attempts to include all relevant (available) controls in equation (1), simply
estimating it at the cross-section of Brazilian cities is a naive strategy. Indeed, one can never
guarantee that all potential confounders are included - some of them are not available in
public or private data, and others are not even measurable.
One such problematic confounder is people’s natural predisposition to agree with preventive
measures and to be careful during a pandemic. In cities where people assign a high cost
to lock-downs, are vaccine-hesitant, and generally did not think COVID-19 was a serious
disease, Bolsonaro’s statements and opinions were probably well received. If one believes
that such pre-disposition positively impacted death rates, a correlation between changes in
Bolsonaro’s approval and excess mortality would arise even if excess mortality did not have
a causal impact on vote shares.
To tackle these identification challenges, I employ an instrumental variables approach, relying
on the observation that cities which had relatively more wind during COVID waves incurred
in less overall deaths during the pandemic.

1.2 Related literature

Most work covering Bolsonaro’s handling of the pandemic focuses on the disparate impact
of the crisis on his supporters (Razafindrakoto et al., 2022, Xavier et al., 2022, Ajzenman
et al., 2023, Cabral et al., 2021, Mariani et al., 2020) and their different perception of the
risk entailed by the situation (Calvo and Dias, 2021). This literature highlights how the
president’s actions and speeches can be mapped to increases in COVID cases and mortality,
but does not link these mechanisms to electoral outcomes.
Partisan differences in reactions to the pandemic are well-known also outside of Brazil. In
particular, in the United States, a considerable literature emerged in the wake of the crisis,
reporting differences in beliefs between Republicans and Democrats. Allcott et al., 2020 de-
velop a model in which agents react to the pandemic according to their perceptions of risk,
and find that partisan differences in mobility behavior cannot be explained exclusively by
differences in actual experienced risk. Grossman et al., 2020 show that democratic-leaning
counties reacted more strongly to governors’ recommendations to stay at home. Barrios and
Hochberg, 2020 present similar results showing that higher Trump vote shares predict fewer
Google searches about the virus and smaller reductions in mobility.
My work is also related to the literature on retrospective voting, which is concerned with
how people evaluate and react to a politician’s policies, in particular taking into account
their own welfare during a term (see, for instance, Fiorina, 1978, Persson et al., 1997 and
Ferejohn, 1986). Healy and Malhotra, 2013 provides a recent review of the topic.
Some have argued, however, that regardless of how a president acts, events can be quickly
interpreted through “partisan lenses”. A possible formalization for this phenomenon can be
found in Szeidl and Szucs, n.d. In their model, agents have an unwarranted prior belief in an

6The reason for considering exclusively 2021 will become clear in later sections. I do not use 2020 in
constructing the linear extrapolation for 2021, since the pandemic had already started then.
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alternative reality where elites conspire against the incumbent politician. They show that
this is enough to guarantee the existence an equilibrium in which an incompetent politician
can discredit an honest elite7 informed about the politician’s type. I.e., the elite members
are unable to convince voters of the politician’s incompetence. Thus, even if mismanagement
of the pandemic occurred, it is possible that it did not affect voting behavior if voters did
not update their beliefs about the former president.
Focusing on the effects of epidemics on election outcomes, both Arroyo Abad and Maurer,
2021 and Gutierrez et al., 2021 find statistically significant negative effects of outbreaks on
incumbents’ vote-shares during the Spanish Flu (1918) in the United States and the H1N1
outbreak in Mexico (2009), respectively.
However, there might not be an intrinsic incumbent disadvantage in a pandemic. Herrera et
al., 2020 document an increase in approval rates of incumbents across 35 different countries
at the onset of the crisis, followed by a decrease as cases continued to grow, in particular
for countries with lax restrictive measures. Bol et al., 2021 also find that lockdowns had a
positive impact on approval rates. These findings were made early on in the pandemic (still
in 2020), and it is unlikely that lockdowns kept their popularity as the pandemic went on.
Nonetheless, the evidence suggests that governments’ handling of the pandemic may have
been more important than pure incumbency effects.
As for COVID-19, there has been some work evaluating its impact on the 2020 presidential
elections in the US. Bisbee and Honig, 2021 provide evidence that voters favoured more
“mainstream” candidates as a response to the uncertainty provoked by the pandemic - in
particular opting for Biden over Sanders in the Democratic primaries. Mendoza Aviña and
Sevi, 2021 show that both knowing someone who was infected with COVID or who died
from it decreased one’s probability of supporting Trump (more so for deaths). They argue
that these effects were not enough to affect election results. Warshaw et al., 2020 also find
that COVID deaths at the local level decreased support for Trump and other Republican
candidates.
The work most similar to mine can be found in Baccini et al., 2021. The authors ask whether
COVID cases at the county level reduced Donald Trump’s vote share in the 2020 elections.
They also use an instrumental variable approach, arguing that the share of workers employed
in meat-processing factories predicts higher case counts and that this should not affect vote
shares except through the latter. Whereas they do control for potential alternative mecha-
nisms and present a reassuring placebo analysis - looking at the impact of the instrument
on previous elections -, it is hard to rule out endogeneity of the instrument8. They find
that Trump lost votes as a result of more COVID cases, and present estimates that a 20%
reduction in cases should have been enough to flip the election result and keep Trump in
the presidency. I add to their work by considering a different context and a more widely
applicable instrument, which is, hopefully, more credibly exogenous. I also provide novel
evidence that incumbent effects do not explain the negative effect of excess mortality on
Bolsonaro’s vote share.

7Whether this is an accurate description of the situation at hand is left to the reader.
8It could be, for instance, that people working in the meat industry have attitudes towards the pandemic

and policies related to it which are different from the rest of the population. Nonetheless, theirs is a useful
exercise, and is more convincing than pure correlational analyses, to the extent that it is harder to come up
with alternative stories to the one proposed by the authors.
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2 Data

I collected data on municipality-level monthly deaths using the microdata from the Sistema
de Informações sobre Mortalidade (SIM), the Brazilian Health Ministry’s Mortality Infor-
mation System. For the years from 1996 through 2020, I used the cleaned dataset from
Basedosdados, an open-source, non-profit NGO that provides clean data from the raw ad-
ministrative files. For 2021 and 2022, I collect preliminary data directly from the Health
Ministry on death-counts9.
Also from Basedosdados, I collect (1) population estimates for all Brazilian municipalities
until 2021 - the original source is the Brazilian Institute for Geography and Statistics (IBGE)
- and (2) results for presidential and state government elections. Since the runoff results for
the 2022 presidential election are missing from the data, I supplement them with the Tri-
bunal Superior Eleitoral (TSE)’s data10.
I furthermore collect micro and mesoregion definitions and municipality areas from the
IBGE’s publicly available data, which also allows me to construct municipality-level charac-
teristics from the 2010 Census microdata. In particular, I make use of the Data Zoom Stata
package, which provides processed and merged Census data11.
Finally, I collect average monthly minimum daily temperatures, precipitation data and, most
importantly, mean wind speeds (m/s) at the municipality level using the brclimr R package
(Saldanha et al., 2023), which makes use of the TerraClimate dataset (Abatzoglou et al.,
2018), a high-resolution global weather dataset, providing monthly data on a 0.04° × 0.04°
spatial resolution grid (0.01° ≈ 1.11km) up to 2021. Brclimr calculates the mean of the
measures available in TerraClimate for each Brazilian municipality.

3 Wind-death timing

Ventilation has been consistently put forth as one of the main ways to decrease COVID
contagion risk (Wang et al., 2021, Bazant and Bush, 2021, Morawska et al., 2020). Wind
can intuitively affect outdoors contagion by dispersing aerosols, but may also have an effect
indoors, through wind-induced natural ventilation. Indeed, it has been proposed as a remedy
for improving air quality in closed spaces (Bayoumi, 2021), and natural ventilation (NV) is
a valuable strategy to reduce the risk of indoors contagion for airborne diseases (Atkinson,
2009; Ghaffari et al., 2022). See section 3.2 of Izadyar and Miller, 2022 for a recent review.
Evidence of the effects of wind speeds on COVID-19 transmission and fatality rates has
nonetheless been inconclusive. Some studies indicate a positive association between wind
speeds and cases/reproduction rates of the virus (Ali et al., 2021; Habeebullah et al., 2021),
and others a negative relationship (Coccia, 2021; Rendana, 2020). Olak et al., 2022 study
the Brazilian case and do not find consistent correlations of wind speeds with COVID-19
cases for four Brazilian cities. Moazeni et al., 2023 provide a comprehensive literature review
of the impact of weather variables on COVID incidence, highlighting that studies often con-
tradict each other. Most of them look at daily and moving average relationships, sometimes

9The data are available at https://svs.aids.gov.br/daent/centrais-de-conteudos/dados-abertos/sim/
10Available at https://dadosabertos.tse.jus.br/
11Data Zoom is a project by the Economics department of PUC-Rio.
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modelling incubation periods to evaluate the effects of weather variations on subsequent reg-
istered COVID cases.
I instead show that the distribution of wind throughout the year moderates the impact of
national-level COVID waves on city-level deaths. Thus, I present novel evidence and a new
method to evaluate the impact of weather variables on the spread and fatality of the COVID-
19 pandemic.
Let us start by taking a look at the relationship between excess mortality and average wind
speeds at the city-month level in Brazil. I define (monthly) excess mortality as deaths above
a linear extrapolation of the month-specific trend of deaths at the city level12. This approach
is quite flexible and allows for city-specific growth in deaths over time. It also allows me to
capture historical heterogeneity in death counts across months13. I control for municipality-
year and region-month fixed effects, and cluster standard errors at the mesoregion level14.
To be precise, I estimate the following equation from 2010:

Excess mortalityi,y,t = β0 +
2021∑

y=2010

βyWindi,y,t + γi,y + δr,y,t + ϵi,y,t (2)

Where the t, i, y, r subscripts stand, respectively, for the month, city, year and region. The
results are presented in panel (a):
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Panel (a) shows the β coefficients from equation (2). Note that using excess mortality in-
stead of COVID deaths allows us to make comparisons with pre-COVID time periods. From
2010 to 2020, wind speed is statistically insignificant in predicting excess mortality. The
relationship becomes significant only in 202115. One may wonder why the effect appears

12For 2021 and 2022 I extrapolate using data up to 2019.
13My results are robust to using deviations from a moving average of deaths instead.
14There are too few states to cluster by state.
15In appendix (9.2), figure (7), I show that adding average monthly precipitation and average daily
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exclusively in the last year and not in 2020 when the pandemic started. I will return to this
point.
The figure in panel (a) seems promising, but there are a few caveats that deserve mention.
Whereas monthly wind speeds negatively impacted monthly excess mortality in 2021, this
relationship is lost at the yearly level, as regions that had high yearly average wind speeds
had proportionally less wind during COVID waves. Intuitively, to get variations in overall
mortality, this is a first hint that we should look at the distributions of wind and deaths
throughout the year.
Furthermore, since both wind and excess mortality are serially correlated variables, esti-
mates of their relationship are sensitive to the selection of different time intervals and may
be severely biased. Consider the following illustrative example. Let there be two cities,
Alpha and Beta, in periods 1 and 2. Let wind be binary: in period 1, Alpha has wind. Beta
doesn’t. If people catch COVID in period 1, they cannot catch it in period 2 (short-term
immunity).
In period 1, the pandemic hits both cities. 80% of the population is infected in the absence
of wind, which reduces contagion by 50%. Alpha thus has 40% of its population sick in
period 1, and Beta, 80%. In the first period, wind and contagion are inversely related.
Now, in period 2, since some citizens are immune, 60% of Alpha’s population is potentially
infected, and only 20% of Beta’s. If again 80% of the not-yet-infected population should get
the disease, but wind persists (only Alpha has it), then Alpha will have 24% (0.5×0.8×0.6)
of its population infected in period 2, whereas Beta will have 16%. In period 2, the relation-
ship between wind and contagion flips - even though the causal effect is constant!
Contrary to local mortality, national COVID waves are reasonably not affected by variations
in local wind. Therefore, one way to tackle this identification challenge is to consider the
relationship between national COVID waves and city-level wind speeds. To build intuition,
panel (b) plots the distribution of wind speeds in the Northern region of Brazil and national
death counts in 2021. Assume that wind does reduce contagion, as I am arguing. Inde-
pendently from the level of wind in the region, Northern Brazil was unlucky. Its low wind
months coincided with the peak of the pandemic in the country. During the wave, wind
could have reduced more the number of cases, in absolute terms, than it did when deaths
were low. Had the distribution of wind in the North been constant throughout the year, it
would have incurred in less overall deaths. I.e., the more wind and excess death co-move,
ceteris paribus, the fewer excess deaths we can expect for the region in the year.
Formally, for each year and city, I define wind-death timing (WDT) as the covariance be-
tween the city’s monthly average wind and the leave-one-out share of national yearly deaths
for each month.

WDTi,y =
1

11

12∑
m=1

(Windi,y,m −Windi,y)(Death sharec,y,m −Death sharec,y)

Where subscript y,m denotes monthly averages, y yearly averages, and i and c indicate city-
and country-level measures, respectively16. I then standardize wind-death timing for each

minimum temperatures does not change the patterns presented here.
16Note that local wind speeds should not affect national COVID-19 outcomes, except to the extent that

they correlate with national wind levels and that the city influences the country’s mortality. Therefore, we
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year. Therefore, in all of the following results, coefficients related to this measure should be
interpreted as responses to (year-specific) standard deviations in the independent variable17.
From now on, wind-death timing (WDT) will refer to this standardized measure. Having
defined WDT, we can now estimate the following equation:

Excess mortalityi,y = β0 +
2021∑

y=2010

βyWDTi,y + δs,y ×+εi,y (3)

Where i, y and s stand for city, year and subdivision, such that δs,y can be year, state-year,
mesoregion-year or microregion-year fixed effects depending on the subdivision represented
by s. Errors are clustered at the mesoregion level (137 in Brazil)18, except for the microregion
specification, in which they are clustered at the microregion level (558). How does the
relationship between WDT and excess mortality evolve over the years? In figure (1), again
and across specifications, we see significant negative effects only in 2021.
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Figure 1: Wind-death timing and excess mortality

Unfortunately, WDT correlates with socioeconomic variables, as shown in appendix (9.3).
Therefore, I cannot immediately claim causality, since WDT is possibly correlated to the er-
ror term in equation (2). Nonetheless, figure (1) is compelling evidence for its causal effect
on COVID-induced excess mortality. Indeed, since the group of variables that are significant
confounders changes for every level of fixed effects, arguing against a causal effect of WDT
would amount to claiming that every group of confounders is a COVID-specific source of

can reasonably expect variations in wind-death timing to occur by chance (instead of being determined in
equilibrium). Hence the choice of a leave-one-out measure.

17In the absence of standardization, results do not meaningfully change. However, since the variance of
wind-death covariance changes during the pandemic (excess deaths and its variance increase drastically),
standardization allows for clearer visualizations.

18Results are robust across different modelling choices, including spatial clustering.
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heterogeneity for mortality that goes in the same direction. In appendix (9.2), figure (8),
I show that controlling for analogously defined rain-death timing and temperature-death
timing does not significantly change the results.

3.1 Why not 2020?

Why are effects null in 2020, when the pandemic had already started? It is hard to make
definite statements on this point, but I will try to provide two groups of potential explana-
tions: changes in behavior and changes in the virus itself.
In appendix (9.5), the movement patterns of Brazilians are classified into different locations
(Grocery and Pharmacy Stores, Parks, etc.) and plotted over time19. All location types,
except for residential areas, suffered a sharp decline in attendance early in the pandemic,
slowly trending up towards baseline until January 2021, when a smaller decrease took place.
In 2021, social distancing (as measured by reductions in attendance) was half as intense as in
2020, despite the larger number of cases and deaths. There are at least three ways, consistent
with these data, in which changes in behavior could lead to wind mattering only in 2021.
First, it is not clear from Google’s mobility data whether people visiting each other’s homes
counts as time spent in a residential area. As such, the big spike in time spent in residences20

may mask increased high-risk interactions, and thus poor wind-induced ventilation in social
situations in 2020 may dampen the effect of wind speeds on COVID contagion. Second, peo-
ple learn. Best practices were not widespread at the start of the pandemic, and the status of
the virus as airborne was questioned deep into the pandemic, including by the World Health
Organization, eventually causing a backlash (Lewis, 2022). Therefore, as time passed and
information became widely available, we may expect people to give increasing preference to
outdoor meetings and that even indoors, people learned to keep environments ventilated.
Third, and relatedly, there may be a selection issue. Whereas average attendance in public
spaces did decrease in 2020, it does not mean that everyone practiced social distancing to
the same extent. If the composition of social interactions in 2021 included more “careful”
people - who avoid closed spaces, open windows more, etc. -, then wind should matter more
in 2021.
Setting aside changes in behavior, the patterns presented here can also be explained by
changes in the virus itself. The turn of the year - from 2020 to 2021 - was accompanied by
a quick shift to a new dominant variant of the virus. As shown in appendix (9.6), Gamma,
and then Delta variants quickly took over starting from February and August, respectively,
whereas the original strand disappeared, for practical purposes. Rowe et al., 2022, in partic-
ular, discuss the potential of new variants to present increased airborne transmission. One
may therefore hypothesise that changes in the main modes of transmission of the virus may
be driving the heterogeneous impact of wind on contagion and subsequent excess mortality.

19The data are available online in the form of Google’s community mobility reports.
20Note that a 20% increase from an already large baseline of time spent at home means larger absolute

increases in time relative to other categories.
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3.2 Spatial dependencies

As previously mentioned, wind-death timing is not randomly allocated across Brazilian mu-
nicipalities. This constitutes a hurdle for undoubtedly claiming that WDT reduced COVID
excess mortality in Brazil and for the implementation of an instrumental variables estimator.
In appendix (9.3), I also present a map with the geographic distribution of WDT in Brazil.
There is substantial spatial clustering in the measure.
Spatial dependencies can generate severe omitted variable bias (OVB). Consider an instru-
ment zi (in my case, WDT), where i is the unit of analysis, which is affected by some sort
of spatial dependence. Without loss of generality, we can decompose zi into zi = h(wi) + gi,
where h(wi) is a generic function of the coordinates wi and gi are unit-specific zero-mean
shocks.
To see why this might be a problem even if we believe zi does not causally affect the outcome
of interest ∆i except through our main explanatory variable (excess mortality), consider a
confounder which also presents spatial dependencies: ci = h′(wi)+g′i. Even if ci is otherwise
independent of zi (i.e. g ⊥⊥ g′), co-movement between h and h′, even by chance, can generate
powerful correlations at the unit level. For instance, if both confounder and instrument have
a north-south gradient, a spurious correlation between z and c will arise.
Whereas a simple north-south gradient would be easy to control for, overlaps in spatial dis-
tributions can take complex forms and a curse of dimensionality may follow - and thus these
dependencies are not adequately controlled for by latitude and longitude polynomials nor
spatial fixed effect estimators21. Furthermore, traditional spatial clustering approaches such
as Conley, 1999 require the existence of a distance threshold after which ziεi are uncorrelated,
where εi is the error term in equation (1). This assumption is particularly problematic for
weather variables. See the great discussion in the extended version of Borusyak and Hull,
forthcoming (BH).
I thus propose a new approach to dealing with OVB induced by spatial dependencies, and
extend the framework of BH. The authors show that if an instrument is a function of an ex-
ogenous and an endogenous component, subtracting the expectation of the instrument given
the endogenous component makes the instrumental variable estimator consistent. I.e. for an
instrument zi = fi(w, g), where g ⊥⊥ ε | w, the recentered instrument z̃i = zi−E[fi(w, g) | w]
identifies β in equation (1). In their framework, the distribution of g is known, and thus
E[fi(w, g) | w] can be easily obtained.
In the present case, g is an unknown component of z, and the potentially endogenous compo-
nent (w) is location itself. Therefore, we need to measure the expectation of the instrument
given coordinates. A reasonable estimator, in this case, is simply taking neighborhood aver-
ages - say, for example, the average WDT for the hundred closest cities. Note that even if
neighborhood averages are not an unbiased estimator for E[fi(w, g) | w] ∀ i, as long as the
city-specific bias is itself exogenous, the BH framework generalizes straightforwardly.
Let us call net WDT (NWDT) the difference between a given city’s WDT and the average
WDT for its 100 closest cities (in terms of distance in kilometres)22. In appendix (9.4), I
present the geographic distribution of the new measure and its relationship with socioeco-
nomic variables. The F-statistics across specifications are now much smaller. Indeed, for

21E.g. a variable may maintain a north-south gradient even within the fixed effect delimited areas.
22In appendix (9.8.3) I show the results for different choices of neighborhood size.
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microregion fixed effects, we cannot reject the null hypothesis that all the socioeconomic
variables included in the model have a 0 coefficient. This indicates that the recentering
procedure likely succeeded in reducing OVB. I will use NWDT to investigate the impact
of excess mortality at the city-level on Bolsonaro’s 2022 vote share, though my results are
robust to using WDT instead. Importantly, the patterns of figure (1) do not change when
considering NWDT, thus reinforcing the argument that wind caused a reduction in COVID
mortality at the city level. Henceforth, wind-death timing refers to NWDT, except when
explicitly stated otherwise.
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Figure 2: Net wind-death timing and excess mortality

4 Results

Did city-level heterogeneity in COVID mortality drive differences in voting outcomes in the
2022 presidential elections? To answer this question, I use an instrumental variable: net
wind-death timing.

The baseline estimates indicate a sizeable effect of excess mortality on the vote shifts towards
the worker’s party (PT) - and thus away from Bolsonaro. Indeed, a one death per thousand
increase in excess mortality is associated with a 2.7% increase in the runoff PT vote-share for
mesoregion FE, and 1.3% for microregion FE. Given that at the national level, the pandemic
entailed 3 extra deaths per thousand inhabitants in 2020 and 2021 together, the estimates
imply an average 3.9% and 8.1% shift for meso and microregion FE, respectively. Effects of
this size would have been more than enough to flip the election result, as the difference in
vote-share between Lula and Bolsonaro was 1.8%23,24. Indeed, using 1% vote-share change

23The same is true for the estimates controlling for potential confounders, presented in appendix (9.8.1).
24Given that I always refer to valid votes - i.e. not counting absences and null votes -, note that a 0.9%
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Table 1: Impact of excess mortality on electoral changes (IV)

Dep. var.:
Difference in PT vote share (2022-2018)

Excess mortality 2021 0.027*** 0.013**
[0.009, 0.235] [0.003, 0.065]

Kleibergen-Paap F statistic 5.052 5.570
Number of municipalities 5562 5562

Mesorregion FE ✓ ✓
Microrregion FE ✓

Excess mortality in 2021 instrumented by the net covariance between leave-one-out
monthly death shares at the national level and city-level monthly average wind. Clus-
tered errors at the level of the FE’s for the two specifications. Given the weakness of the
instrument in both cases, I present Anderson-Rubin confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.

per death per thousand as a lower bound of the effect, a one-third reduction in excess mor-
tality in 2020 and 2021 would be enough to bring Lula from 50.9% to 49.9% and flip the
election result.
In this baseline, I do not include any controls except for subregion fixed effects. In appendix
(9.8.1), I present the estimates obtained by including the full set of controls shown in (9.4).
The point estimates are slightly smaller but statistically indistinguishable from the ones pre-
sented here, though they are significant only at the 10% confidence level. This is mostly due
to a widening of the confidence sets.
Also note that, whereas the relationship between wind-death timing and excess mortality in
2021 is quite robust across specifications, the first-stage Kleibergen-Paap (KP) F-statistic of
NWDT is below the usual threshold of 10 after controlling for meso and microregion fixed
effects. In the just-identified case, KP coincides with the effective statistic from Olea and
Pflueger, 2013, which is the appropriate statistic for the case of non-homoskedastic errors
(Andrews et al., 2019). As such, I present the Anderson-Rubin p-values and 95% confidence
sets, which are consistent under weak instruments.
Due to a lack of statistical power, my main specification does not provide tight confidence
intervals, and thus the difference in magnitude between the micro- and mesoregion FE speci-
fications could just reflect noise. However, there is a plausible explanation for why we should
expect different levels of fixed effects to imply different estimates. Say that a citizen of city
i cares not only about their own city, but also about their microregion and mesoregion. For
simplicity, we can represent this with a linear model:

∆i = β1Excess mortalityi + β2Excess mortalitymicro + β3Excess mortalitymeso + ϵi (4)

Where ∆i is the usual shift in vote-shares for the worker’s party and Excess mortality micro
and meso are averages for their respective levels, included to capture the effects derived

decrease in PT vote shares would be enough to flip the election, since that would imply a 0.9% increase for
Bolsonaro.
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from people caring about cities other than their own. Clearly, controlling for mesoregion
fixed effects, there is no residual variation in Excess mortalitymeso, and thus β1 is not biased
by the omission of Excess mortalitymeso in the estimated equation. But it is biased by the
omission of Excess mortalitymicro! As we control for progressively more fine-grained FE, the
more we take away from our estimates the effects of people caring about their vicinity. If we
are generally interested in the effect of the pandemic on votes, this may not be desirable. It
boils down to a choice of estimand.
A corollary of this reasoning is that the estimates presented here are likely a lower bound of
the total effect of COVID deaths relative to a counterfactual world without the pandemic25.
Indeed, at the limit, if people cared exclusively about the national situation, then hetero-
geneity in city-level excess mortality should not imply differences in vote shares between
cities. Therefore, if people care about their local situation, but also care - separately - about
the national situation, then the effect of an extra death relative to the national average does
not capture the full effect of the pandemic on votes.
Note that I do not weight observations by population size - doing so, unfortunately, makes
the first stage unfeasibly weak26. However, as I show in appendix (9.8.9), there does not
seem to be a gradient of the point estimates based on population size. As such, the results
presented here are likely to be a good approximation of actual election results - which are
obviously population-weighed.

4.1 Exogeneity

The instrumental variable estimator presented above requires two main assumptions. First,
the instrument must be valid. That is, it must be significantly correlated to the indepen-
dent variable of interest. Although my instrument is weak, my results are significant using
weak-instrument-robust statistics.
Secondly, the instrument must be exogenous - that is, the timing of wind must not affect
election outcomes except through changes in excess mortality. How could NWDT affect vote
shares?
At the national level, it could be that regions that have a particular wind distribution have
certain geographic characteristics that lead to particular political preferences and reactions
to policy choices during the pandemic. Considering variation within fine-grained administra-
tive regions, however, it is unlikely that heterogeneity in the distribution of wind throughout
the year affects voting patterns. Nonetheless, as shown in appendix (9.8.7), controlling for
the average NWDT before 2021 does not change the results.
Exogeneity could also be violated if the timing of wind throughout the year is related to so-
cioeconomic confounders which lead to different voting patterns. Previously, I showed that
NWDT seems to be quasi-randomly distributed conditioning on microregion fixed effects.
Nonetheless, throughout my analysis, I show the robustness of the results to including the
full set of controls I gathered.
I will present three further pieces of evidence, necessary to argue that the exogeneity of the

25This rests on an assumption of monotonicity: if excess deaths in a city reduce votes for Bolsonaro, then
excess deaths in the country, having an effect of their own, should also reduce votes for Bolsonaro.

26This is expected: within meso and microregions, weighting for population removes most of the variation
within the subregion, as most of its population will often concentrate in a single city.
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instrument is satisfied. These are also generally consistent with the hypothesis that NWDT
induced changes exclusively in COVID-specific excess mortality, which in turn affected Bol-
sonaro’s electoral outcome. Each of these three is associated with a slightly different measure.

• Treatment status: wind-death timing in 2021 - which I will refer to as treatment
- does not affect previous election results nor excess mortality (alternatively: no pre-
trends for treated cities).

Treatment status y = NWDT 2021

• Seasonal winds: The covariance between monthly wind speeds in previous years and
monthly death shares in 2021 does not matter in any other year (to account for, e.g.,
winds in February influencing elections/deaths).

Seasonal winds y = cov(Windy,m, Death share2021,m)

• Yearly wind-death timing: The covariance between wind speeds and monthly death
shares does not matter in any other year except 2021 (when such covariance does
influence overall mortality).

Yearly wind-death timing y = NWDT y

Another assumption, which cannot be checked, is that the instrument is not correlated to
any omitted confounders which are sources of COVID-19-specific heterogeneity in election
outcomes. As NWDT is not correlated with the set of confounders I gathered conditional on
microregion FE, and since my results are robust to controlling for such confounders, I find
no evidence that this assumption is violated.
What does the relationship of each of these three measures with excess mortality look like?
In appendix (9.7), I show that, across specifications, we see the same patterns of figure (2) -
the coefficients are mostly insignificant and small in magnitude before 2021. In 2021, across
specifications, we find negative and statistically significant effects of NWDT on excess mor-
tality.
In sum, particular seasonal wind distributions throughout the year do not affect excess deaths
before 2021. Nor do the selection of treated cities and year-specific wind-death timings. This
indicates the link is COVID-specific.
As for the influence of these measures on election results, the pattern is broadly similar.
NWDT in 2021 reduces vote shifts towards the worker’s party in the 2022 election. Given
that it also reduces excess mortality in 2021, under suitable assumptions, excess mortality
caused a shift in votes towards the workers’ party.
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(a) Treatment status

-.0
1

-.0
05

0
.0

05
.0

1

C
oe

ffi
ci

en
t o

f s
ea

so
na

l w
in

ds
on

 d
el

ta
 P

T 
vo

te
-s

ha
re

2010 2014 2018 2022

L1 L1 L1 L1

Microrregion FE Mesorregion FE

(b) Seasonal winds
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(c) Yearly wind-death timing

5 Incumbent effects

Even if one accepts that COVID-induced excess mortality causally - and negatively - affected
Bolsonaro’s electoral performance in 2022, voters may simply be unsatisfied with whoever
is in power during a period of hardship, especially one so ubiquitous and reaching as the
pandemic. Thus, incumbency effects could explain the results presented so far. I will provide
evidence that this is not the case.
As mentioned in the introduction, the federal government was not the only source of pandemic-
related policy. On April 15th, 2020, the Brazilian Supreme Court ruled that the federal
government could not overrule state and municipality decisions to put up additional restric-
tions on mobility and to close establishments. This did not mean full independence - the
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federal government could still legislate on the topic. However, the aftermath of this decision
was that most lockdowns and closings were decided at the local level, and measures were
uncoordinated and heterogeneous. This went as far as independent vaccine purchases by
governors.
Given the heterogeneity in policy and local responsibility, this gives us a good set-up to
investigate whether, independently from political affiliations and decisions, incumbents’ vote
shares were negatively affected by excess mortality. That is, did incumbents - both governors
and the president - fare relatively worse in cities that suffered from higher excess deaths?
The strategy here is identical to that of the main results. The sole difference is that the
outcome is now the change in the incumbent state governor’s vote-share in the first-round,
to include governors who won or lost the reelection without the need for a runoff27.

Table 2: Impact of excess mortality on state government electoral changes (IV)

Dep. var.:
Difference in incumbent vote share (2022-2018)

Panel I: effect for governors running for re-election

Excess mortality 2021 -0.012 -0.010
[-0.091, 0.093] [-0.083, 0.081]

Kleibergen-Paap F statistic 5.901 5.781
Number of municipalities 4243 4243

Panel II: excluding Bolsonaro-aligned governors

Excess mortality 2021 0.010 0.006
[-0.047, 0.412] [-0.065, 0.191]

Kleibergen-Paap F statistic 5.213 5.017
Number of municipalities 3774 3774

Mesorregion FE ✓ ✓
Microrregion FE ✓

Excess mortality in 2021 instrumented by the net covariance between leave-one-out national
monthly death shares and city-level average monthly wind speeds. Clustered errors at the level of
the FE’s. Given the weakness of the instrument, I present Anderson-Rubin confidence intervals
and p-values. Bolsonaro-aligned governors are defined as those from Republicanos and PP. Vote-
share measured in the first round.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.

Governors can run for a maximum of two consecutive terms in Brazil. In the 2022 general
elections, a total of 20 candidates ran for reelection28. A whopping 18 were successful.
I retrieved city-level vote-shares for governors running for reelection in 19 out of the 20,

27In Brazil, governors need 50% of the votes in the first round to win right away.
28Only 7 disputes did not have incumbents running.
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amounting to a total of 4243 municipalities29. Note that restricting the presidential analysis
to these municipalities does not meaningfully change the results.
In panel I, I present the estimates for all governors running for reelection. The point estimates
in both meso and microregion specifications are slightly negative - though not far off from the
point estimates we obtained for the presidential runoff. However, if we restrict the analysis
to non Bolsonaro-aligned governors (PP and Republicanos), the estimates increase and flip
in sign. That is, the effect for incumbents whose parties did not support Bolsonaro before
the first round of the elections is if anything, slightly positive30.
The significant effects in the presidential analysis do not seem to stem from an unconditional
incumbent disadvantage during a crisis. This reinforces the thesis that Bolsonaro, due to his
approach towards the pandemic and denialism, and not some incumbent curse, received a
backlash from those most affected by the pandemic.

6 Robustness tests

I conducted a series of tests to validate the robustness of my results. First, as previously
mentioned, adding the full set of controls to my main specification does not significantly
change coefficients, though the magnitude of the point estimates is slightly smaller - 0.019
and 0.011 for meso and microregion definitions, respectively. They remain significant at the
10% level, and the changes in significance are likely due to a widening of the confidence sets
following a decrease in the first stage’s F-test. The table with these results can be found in
appendix (9.8.1). In appendix (9.8.7), I also show that controlling for a moving average of
the instrument does not affect my estimates.
Second, in appendix (9.8.2), I show that using WDT instead of the net wind-death timing
does now change my conclusions. If anything, the point estimates are larger - conditional on
the full set of controls, they are 0.038 and 0.011, and slightly greater unconditionally. It is
reassuring that using WDT provides similar results - it doesn’t seem that any bias stemming
from spatial correlation in the instrument significantly affects the estimates.
Third, table (7) and figure (11) in appendix (9.8.3) highlight the robustness of the results
to varying the neighborhood size definition. In the table, I present the main result (the
simple IV, with and without controls), for neighborhoods of size 20, 40, 80, 100 (baseline)
and 150. As can be expected, smaller neighborhoods yield lower magnitudes for the point
estimates. The reasons are likely threefold: (1) wind-death timing net of small neighborhood
averages is potentially associated with proportionally larger measurement error, leading to
estimates biased towards 0; (2) COVID contagion spillovers to nearby cities may make local
differentials in wind have an attenuated effect on mortality; (3) the mechanism enshrined in
equation (4). Nonetheless, unconditional estimates are significant for all but neighborhoods
of size 20, and estimates are almost identical for neighborhoods from sizes 80 to 150.
In figure (11) I plot the coefficients of an event study specification, for each neighborhood
size and for WDT (i.e. without netting out neighborhood averages). Each shade of blue
represents a different equation, and the lighter colors represent progressively smaller neigh-

29The data from Basedosdados does not include information for the state of Mato Grosso in 2018.
30Note that this is a very lenient definition of Bolsonaro ally. Some politicians such as Zema, governor

from Minas Gerais, declared their support after the first round.
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borhoods. Note that these equations track a constant selection of cities into treatment across
time. Clearly, using WDT alone entails an issue - the cities that had higher wind-death tim-
ing in 2021 were decreasing their PT vote share in every election by a greater amount than in
2018. But selection into treatment should not affect previous elections! This is suggestive of
some omitted confounder, though if we were to extrapolate the pre-trend (which is slightly
increasing), the estimates would be biased towards 0, and my main results would still hold.
However, subtracting neighborhood averages from WDT seems to eliminate the issue, and
progressively more so for smaller neighborhoods. The point estimates for a neighborhood of
size 20 are pretty much constant at 0 from 2008 to 2018, and the pattern is similar for other
neighborhood definitions up to size 100. Thus, if neighborhood size choice can be thought
of as a trade-off between power and less confounding - as captured by flatter pre-trends -,
my baseline specification is a good choice.
Fourth, I test whether having COVID death and case rates as the main independent variable
yields results similar to those of the baseline specification. Here, unfortunately, NWDT is too
weak an instrument to obtain reliable estimates. However, WDT provides a good first stage,
and the point estimates using either NWDT or WDT are very similar. This, in conjunction
with previous evidence that WDT, conditional on the full set of controls, does not entail
significant bias, validates its usage here. Results are indeed encouraging: not only are esti-
mates significant, but adding controls leaves point estimates practically unchanged! Note,
however, that these estimates are quite large: 0.086 and 0.033 for meso and microregion
fixed effects, respectively. That is 3 to 4 times larger than the estimates found when using
excess mortality. Whereas this could reflect the usage of a different instrument and a higher
impact of COVID deaths relative to excess mortality in general, there is another good reason
why this might happen. Since the IV estimate is a local average treatment effect (LATE),
we have to be careful about who are the compliers in the present case. Compliance is likely
not a big issue when it comes to excess deaths - people probably can’t decide whether to die
or not -, but it takes a front seat when it comes to characterizing COVID deaths. Testing
can play a role here since the municipalities most responsive to WDT in terms of COVID
death rates are likely the ones which test more. Also, the cities that test more are likely to
be more careful towards COVID and react more against Bolsonaro in case of a higher death
toll. This could explain larger point estimates.
Fifth, I check that the results for the presidential election hold in the subsection of states
for which the incumbent governor was running for reelection. I do this to ascertain that the
null findings for incumbent governors do not stem from the particular subset of cities with
incumbents running, which could drive the results. Indeed, point estimates for the main
specification in this group of cities are basically unchanged and more precisely estimated.
Sixth, I check that using an alternative definition of excess mortality does not change the
results. Estimates do not substantially change when considering excess mortality in 2021 to
be defined as deaths above the average from 2017 to 2019 (I exclude 2020 since the pandemic
had already started then) per thousand inhabitants.
Seventh, I present the results for a variation in the dependent variable: using the first round
instead of runoff results. Estimates are quite similar (0.032 and 0.019 for meso and mi-
croregion), though a bit larger in magnitude. This is consistent with the marginal voter
changing their mind enough not to vote for Bolsonaro in the first round but not sufficiently
to support the worker’s party - which gathers staunch opposition from a substantial part of
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the population in Brazil.
Eighth, I show that there is no evidence for effect heterogeneity by population size in ap-
pendix (9.8.9). This suggests that my results are representative of population-weighed esti-
mates31. Note that I use WDT instead of NWDT to provide more power to the heterogeneity
analysis.

7 Graph neural network counterfactuals

The main issue I encountered when trying to use (non-net) wind-death timing as a treatment,
as shown in figure (11), was that cities selected into treatment - i.e. WDT2021 - presented
differential trends in prior elections. In previous subsections, I tackled this issue using
NWDT, which reduces the scope for spatial clustering and omitted variable bias (as measured
by correlation with observable potential confounders). In this section, I show that graph
neural networks can provide credible counterfactuals even if there is selection into treatment.
Let us consider, for the purposes of this analysis, that cities with WDT above the median
in their state are “treated”, and assign them to “control” otherwise. How can we get an
appropriate counterfactual if the treated and control groups are substantially different and
their voting patterns do not evolve in parallel?
The two groups still carry information about each other. Traditionally, one would perform
some kind of matching (e.g. using propensity scores or synthetic controls), so that treated
and control units are paired according to some underlying measure of similarity. Though
at its core my approach does match treated and (a function of the) control units, I try to
tackle the issue as a prediction problem: using only the control units, I attempt to construct
a model that approximates the treated units’ outcomes as well as possible.
To do so, I use a graph attention network (GAT). Explaining GATs from scratch is outside
the scope of this project, but I will try to provide some intuition as I go. The technicalities
of the machine learning algorithm are not necessary to understand the application presented
here32,33. I start with an overview of how counterfactual prediction fits within a potential
outcomes framework.

7.1 Potential outcomes

In this section, I propose a method to evaluate treatment effects based on a neural network’s
(lack of) accuracy post-treatment. This comes down to recasting causal inference as a pre-
diction problem. I refer to Chernozhukov et al., 2021 for a summary of the related literature
and a general framework that includes the method presented here. My discussion will be
inspired by their conformal inference test34.

31As mentioned above, the instrument becomes unfeasibly weak if one applies population weights and
controls for fine-grained fixed effects.

32The Jupyter Notebook containing the code is available at https://github.com/RafaelPintroSchmitt/
neuralnet-counterfactuals.

33The definition of the attention layer can be found at https://pytorch-geometric.readthedocs.io/en/
latest/generated/torch geometric.nn.conv.GATConv.html

34Their test relies on permutations across the time dimension. Since I have very few (4) years of obser-
vation and a single post-treatment period, the test becomes trivial.
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Following the potential outcomes framework of Neyman, 1923 and Rubin, 1974, and bor-
rowing the notation from Chernozhukov et al., 2021, let t ∈ {1, 2, ..., T} be a generic time
period in a sequence of length T . I consider {Y I

i,t}Tt=1 to be a sequence of outcomes for a unit
of observation i followed over time, under some intervention at time T0. Let θt be a scalar
capturing the effect of the intervention, with θt = 0 for t < T0. {Y N

i,t }Tt=1 denotes Y I
i,t − θt

for each t, that is, it represents a counterfactual world where the intervention did not take
place.
Finally, let {PN

i,t} be a sequence of mean-unbiased predictors or proxies for Y N
i,t , such that

Y N
i,t = PN

i,t+ut, where E(ut) = 0 ∀ t ∈ {1, ..., T}. The potential outcomes can thus be written
as:

Y N
i,t = PN

i,t + ut

Y I
i,t = PN

i,t + θt + ut

(5)

Under suitable assumptions, having PN
i,t allows us to test hypotheses on θt. One such hy-

pothesis is whether θt = 0 ∀ t ≥ T0. If we reject it, we have evidence that the intervention
had some effect.
My contribution will be to provide a method to construct such counterfactuals (i.e. to get a
plausible sequence {PN

i,t}), using a graph neural network architecture. If such a method can
extrapolate from the training sample, i.e. it can predict the dependent variable accurately
for t outside the periods used for training, then it provides a good candidate for PN

i,t .

7.2 Defining the neural network

The first step is setting up the data structure which will be fed into the model. I construct a
graph - also called a network - for each year. Each city is connected to its 10 closest neighbors
in terms of geographical distance, which is itself used as an edge attribute (a weight used
by the neural network). I include the covariates listed in appendix (9.4) as node attributes,
together with the year-percentile of the difference in PT vote-share relative to the previous
election, which is the outcome of interest35, and treatment status.
In machine learning jargon, predicting the outcome of interest for each city is a node-level
classification task. As such, it is odd to include the percentile of the difference in vote shares
as a covariate, since - usually - the network could just learn to use the outcome to predict
the outcome. This would not be very useful. My reasons will become clear.
The objective of the model is simple: given a sample of Brazilian cities’ changes in PT vote
share, it should predict the outcome for all other cities. If it learns to do so, we can hope that
by inputting the control cities’ information, the model will be able to predict the treated
cities’ outcomes. Note that the model learns a generic instruction: given any set of cities,
predict the rest. But by learning to do so, it becomes well-suited for our objective, which is
creating a counterfactual for the treated group.
I split the sample into training and test sets. The model’s parameters are obtained from one
set of cities, and my results are derived by applying the model to a different set.
Now I can explain the neural network’s architecture - i.e. how it learns. I start with an

35This measure ranges from 1 to 100 where 1 is the smallest difference (more negative) and 100 is the
highest.
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overview for the reader unfamiliar with neural networks and then go into the specifics. At
the first epoch (or training round), I feed the model with the 2010 network. Each layer
of the network is basically a set of instructions to receive, transform and transmit the vec-
tor/matrix received from the previous layer. Then, the model applies an optimizer step, more
precisely a variant of gradient descent called Adam36. Intuitively, this optimizer step consists
of changing the parameters of every layer a little so that the training loss37 is smaller. I use
a cross-entropy loss function. In the next training round, I use the 2014 network, and then
the 2018 one. The cycle resumes, from 2010 to 201838. It may seem that I have exhausted
my data already at the third training round, but the key here is that each year’s dataset has
many subsets of cities.
The actual architecture and structure of the layers is quite simple. First, and very impor-
tantly, I apply a dropout layer, which consists of dropping, at random, all the information
for a given percentage of cities. Note that the model will eventually reduce overall losses.
By using a dropout layer right away, the model will have to learn to predict the outcomes
for the omitted cities using information coming only from the non-dropped ones. This also
explains why I kept the outcome as one of the covariates: I want the network to use the
outcomes of the non-dropped cities to predict those of the omitted ones.
The second layer is then a graph attentional operator from Veličković et al., 2018. In simple
terms, this is a layer that performs a weighted sum of the covariates of the node’s neighbors
and its own. The weights for each neighbor are learned - and can depend on similarity
across any covariate39. Then, I apply a ReLU layer, which is a piece-wise linear function,
and another graph attentional operator. Finally, I apply a linear layer.
Summarizing:

• Architecture:

1. A dropout layer (with varying dropout rates).

2. Two attention layers, with a ReLU in between.

3. A linear layer.

• Training procedure:

1. Perform a forward pass and take an optimizer step for each year in the training
data (2010-2018).

2. 100 training rounds for each year - 300 forward passes and optimization steps.

I trained the model, 300 forward passes and optimization steps, a hundred times, obtain-
ing different parametrizations for each40. I call each of the hundred iterations a training
procedure.

36Kingma and Ba, 2017
37Which is a function summarizing how wrong the model is.
38Note that I never include 2022 in the training process so that treatment outcomes - the effect of WDT

on excess mortality - do not affect training.
39In this sense, this is not too different from a synthetic control approach.
40This is expected, since the dropout layer randomly selects cities to be dropped, causing different training

paths. I also use different random seeds for each training procedure.
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7.3 Performance

The model performs reasonably well. Be reminded that the outcome of interest is the
percentile of the difference in worker’s party vote share for each year. Also, let us define
R2

GAT = 1− MSEM

MSER
, where MSEM is the mean-squared error of the model and MSER is the

mean-squared error under random guesses.
The testing is simple: I take the set of cities in the test set, which were not used in training,
select half at random and make their outcome variable equal to zero. Then, I input the
resulting dataset into the model and evaluate it on its ability to guess the dropped cities’
outcomes correctly.
Across training procedures, on average, R2

GAT ≈ 0.8 in the test set, and its accuracy - getting
the percentile exactly right - is 2 to 3 times higher than random guesses. The performance
on training and test sets is similar, which indicates overfitting is likely not an issue, and the
model is on average unbiased from 2010 to 2018. I will come back to this last point.
A fairly representative training procedure yields model predictions such as this:

75 50 25 0 25 50 75
0

5

10

15

20

25
Predictions
Shuffled

Figure 3: Perfomance of the model

Where the x-axis is the error in the prediction (e.g. a prediction of 25 for a true value of 10
would yield an error of 15). In blue, we can see the model’s errors, and in orange, the errors
stemming from guessing using a random shuffle of the percentiles (random guesses). Clearly,
the neural network learned to predict a city’s voting outcomes using the information of the
cities in its neighborhood and its covariates.

7.4 Treatment effect evaluation

We can finally turn to the evaluation of treatment effects using the neural network’s predic-
tion as counterfactuals. Be reminded that I define as “treated” those cities with wind-death
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covariance above the median in their state.
For the years 2010 through 2022, I omit the outcomes of the treated cities and feed the data
into the network. I get predictions for each treated city which are based only on the control
cities (and covariates of the treated cities). For each year, I record the bias of the predictions
(average error across cities) and repeat the training and evaluation 100 times. I perform the
same exercise randomly selecting “treatment” units at every training procedure and year, as
a placebo test.
The results are plotted in the following picture:

2010 2014 2018 2022
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0

5

10

Year
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as Treatment

Placebo

Figure 4: Bias distributions over time, training on 2010-2018

The volume around the vertical lines represents the distribution of the bias obtained for the
hundred training procedures. The error bars represent the 95% confidence intervals for the
bias, calculated from the observed distribution41.
The model is roughly unbiased before treatment for the treated, and unbiased before and af-
ter treatment for the placebo. Using the notation introduced at the beginning of this section,
the neural network’s predictions are a good candidate for a sequence {PN

i,t} of mean-unbiased
predictors or proxies for Y N

i,t .
The bias is positive for 2022. This means that the predictions of the model - our counterfac-
tual - overshot the worker’s party vote share in treated cities42. From (5), we get that θ2022,
the treatment effect, should be negative. Knowing that WDT negatively impacted excess
mortality in 2021, we can revert back to the IV reasoning of previous sections to argue that
excess mortality caused a decrease in Bolsonaro’s vote share. Note, however, that I tackled

41I.e. the space between the limits of the confidence intervals contains 95 training procedures out of the
100.

42The model gets the treated group’s percentile wrong by about 5 positions up, on average.
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the issue of selection of cities into treatment43, particularly when using WDT instead of
NWDT, by constructing a credible counterfactual.
From the error bars for the placebo, we can see that, across the training procedures, a ran-
dom selection of cities into treatment would generate results as extreme as the ones observed
for the treatment group less than 5% of the time.
Furthermore, in the spirit of the conformal test proposed by Chernozhukov et al., 2021, I
provide some back-of-the-envelope calculations on how likely it would be to find results as
extreme as the ones presented here if there were no effect to be found. Let {0, 0, 0, 1} repre-
sent the current result, indicating that I do not find effects for the first three years and do
find an effect for the fourth. This configuration has a 25% chance of occurring under the set
of all permutations of the observed results, which can be interpreted as a sort of p-value.
Taking the placebo in conjunction with the permutations test, it is unlikely that the results
here do not reflect a treated-group-specific effect in 2022. However, the same caveat from
before applies: it could be that the treated group is different from the control across some
dimension that moderates the pandemic’s impact on the elections, and the neural network
did not have the opportunity to learn this pattern.
The main patterns do not change if I restrict training to 2010 and 2014:
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Figure 5: Bias distributions over time, training on 2010-2014

Finally, note that this is also an exercise in model selection: given the architecture, the
results here are an average of many parametrizations stemming from different random seeds.
As such, I provide evidence for the robustness of my results with respect to control group
selection and counterfactual generation procedures.

43One would be right to argue that I should have also trained the model to predict excess mortality to
make this argument. Since pre-trends were never an issue for excess mortality, I omit this exercise.
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8 Discussion and conclusion

This paper has examined the causal effect of city-level variation in excess mortality in 2021
on Bolsonaro’s performance in the 2022 elections. Whereas most of the past literature has fo-
cused on the consequences of a leader’s speeches and attitudes in driving changes in behavior
during the COVID-19 pandemic, I shed light on how they translate into electoral accountabil-
ity, by exploiting the nuanced relationship between meteorological factors, pandemic-driven
mortality, and political outcomes, offering new insights for future work.
First, I establish a connection between wind speeds and COVID-induced excess mortality.
In particular, variations in the timing of wind throughout the year - beyond the mere level
of wind - are key in moderating the impact of national pandemic waves on local outcomes.
Wind serves as a protection, and having more of it during critical periods translates into
fewer overall deaths. Importantly, I operationalize this idea by measuring, for each city in
Brazil, the covariance between local monthly average wind speeds and the national share
of yearly deaths in a given month. This allows me to implement an instrumental variable
strategy to examine the causal link between city-level mortality and Bolsonaro’s vote share
in 2022.
This study underscores the importance of public health outcomes in driving election results,
and in particular how crisis, politicians’ reactions and accountability intersect. My most
conservative estimates indicate that a one-third reduction in excess mortality during the
pandemic would have swayed the election result in favor of Bolsonaro. The results stand up
to rigorous scrutiny, encompassing alternative specifications and robustness checks. Further-
more, I address and dismiss the notion that these findings are driven solely by incumbency
effects, highlighting the unique nature of the relationship between excess mortality and the
former president’s electoral outcomes, which is suggestive that his attitudes and public per-
sona took a role in shaping the voters’ reaction.
I also provide a novel method for constructing counterfactuals, relying on neural networks,
more specifically using a graph attention network architecture. I show how a simple model
is capable of producing reliable estimates, and may thus be of use in other applications for
which treated and control units are numerous but not immediately comparable. I see partic-
ular promise in using this method under a broader difference-in-differences framework when
parallel trends are not satisfied.
It would also be interesting to evaluate whether the interplay between wind and excess deaths
can be replicated in other parts of the world. If so, the strategy employed here could be
extremely useful in examining the consequences of the pandemic at the city level across a
wide variety of outcomes. Nonetheless, the work presented here makes the Brazilian case
particularly promising for future studies.
In summary, this paper advances our comprehension of the connections between leaders’
actions, their immediate impact and eventual electoral consequences. Partisan lenses may
play a role in the voters’ interpretation of events, but the evidence presented here highlights
that politician’s policy choices remain subject to democratic accountability.
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9 Appendix

9.1 Excess mortality over time

0
.5

1
1.

5
2

Ex
ce

ss
 d

ea
th

s 
(p

er
 th

ou
sa

nd
)

2010 2012 2014 2016 2018 2020 2022
Year

Figure 6: Excess mortality over time
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9.2 Other meteorological factors
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Figure 7: Excess mortality and wind, controlling for precipitation and temperature. Excess
wind defined as wind speeds above a 12-year month-specific moving average.

-.6
-.4

-.2
0

.2

C
oe

ffi
ci

en
t o

f w
in

d-
de

at
h 

tim
in

g
on

 e
xc

es
s 

m
or

ta
lit

y

2009  
2011  

2013  
2015  

2017  
2019  

2021

No FE State FE
Mesoregion FE Microregion FE

Figure 8: Wind-death timing and excess mortality, controlling for rain- and
temperature-death timing.
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9.3 WDT: geography and relationship with confounders
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Figure 9: Geographic distribution of Wind-Death Timing
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Table 3: Relationship of WDT with potential confounders

Dep. var.:
Wind-death timing

PT vote share previous election 1.743*** 1.231*** 0.366*** 0.038
(0.413) (0.297) (0.122) (0.080)

Evangelical share -0.443 -0.330 0.063 -0.090
(0.357) (0.228) (0.116) (0.077)

Share of population living in an urban area -0.320 -0.245** -0.115* -0.064*
(0.194) (0.099) (0.064) (0.034)

Share of population that owns a radio 0.249 0.761*** 0.407* 0.100
(0.396) (0.268) (0.215) (0.107)

Share of population that owns a TV -0.260 0.415 0.109 -0.035
(0.590) (0.291) (0.188) (0.161)

Average age of the population -0.010 -0.007 -0.008 -0.010**
(0.020) (0.012) (0.007) (0.004)

Literacy rate -0.898 0.160 0.039 -0.194
(1.055) (0.641) (0.292) (0.194)

Average family income (thousands of Reais) 0.299*** 0.052 -0.050* -0.015
(0.084) (0.049) (0.029) (0.016)

Share white -0.706 -0.477* -0.415** -0.013
(0.474) (0.281) (0.160) (0.098)

Share born in municipality -0.760*** -0.527*** -0.118 -0.037
(0.205) (0.172) (0.114) (0.054)

Hours worked (main job) -0.030*** -0.009 0.001 0.001
(0.010) (0.005) (0.003) (0.002)

High school degree 0.363 0.772 0.576* 0.512***
(1.075) (0.559) (0.302) (0.193)

Further education -4.023 2.515** 1.819** 0.252
(3.082) (1.268) (0.841) (0.414)

Average wind velocity -0.136 -0.048 -0.096 -0.088
(0.144) (0.103) (0.070) (0.071)

Log pop. density -0.058 -0.078*** -0.025 -0.013
(0.040) (0.029) (0.018) (0.009)

Log population 0.044 -0.003 -0.012 -0.009
(0.050) (0.022) (0.013) (0.008)

F-statistic 20.061 6.326 3.999 2.293
F p-value 0.000 0.000 0.000 0.003
State FE ✓ ✓ ✓
Mesorregion FE ✓ ✓
Microrregion FE ✓

Errors clustered at the mesoregion level, except for the microregion FE specification, where errors are clustered
at the level of the FE.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.4 NWDT: geography and relationship with confounders
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Figure 10: Geographic distribution of Net Wind-Death Timing
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Table 4: Relationship of NWDT with potential confounders

Dep. var.:
Net wind-death timing

PT vote share previous election 0.191* 0.094 0.008 -0.068
(0.113) (0.094) (0.076) (0.069)

Evangelical share -0.030 -0.068 0.088 -0.024
(0.094) (0.088) (0.083) (0.066)

Share of population living in an urban area -0.067 -0.115*** -0.077** -0.057*
(0.048) (0.043) (0.034) (0.029)

Share of population that owns a radio 0.259** 0.117 0.121 0.065
(0.111) (0.108) (0.096) (0.090)

Share of population that owns a TV 0.103 0.056 -0.051 0.026
(0.228) (0.212) (0.151) (0.135)

Average age of the population -0.011** -0.012*** -0.008** -0.009**
(0.005) (0.004) (0.004) (0.004)

Literacy rate -0.132 0.017 0.048 -0.135
(0.189) (0.249) (0.199) (0.174)

Average family income (thousands of Reais) -0.001 -0.004 -0.025 -0.017
(0.022) (0.022) (0.020) (0.015)

Share white 0.106 -0.002 -0.041 0.035
(0.084) (0.100) (0.085) (0.083)

Share born in municipality -0.077 -0.092 -0.046 0.001
(0.066) (0.071) (0.067) (0.050)

Hours worked (main job) 0.002 0.003 0.003* 0.002
(0.002) (0.002) (0.002) (0.002)

High school degree 0.115 0.234 0.302 0.344**
(0.244) (0.227) (0.187) (0.154)

Further education 1.182** 1.119** 1.000** 0.261
(0.542) (0.507) (0.442) (0.360)

Average wind velocity -0.073*** -0.079** -0.031 -0.044
(0.027) (0.037) (0.045) (0.054)

Log pop. density -0.006 -0.020* -0.021** -0.008
(0.009) (0.011) (0.010) (0.007)

Log population -0.007 -0.001 -0.006 -0.009
(0.012) (0.010) (0.008) (0.006)

F-statistic 2.160 2.455 2.716 1.321
F p-value 0.009 0.003 0.001 0.179
State FE ✓ ✓ ✓
Mesorregion FE ✓ ✓
Microrregion FE ✓

Errors clustered at the mesoregion level, except for the microregion FE specification, where errors are clustered
at the level of the FE.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.5 Social distancing by locations
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9.6 Variants over time
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9.7 Three measures, same pattern: excess mortality
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(c) Yearly wind-death timing
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9.8 Robustness tests

9.8.1 Adding controls

Table 5: Impact of excess mortality on electoral changes (IV), including controls

Dep. var.:
Difference in PT vote share (2022-2018)

Excess mortality 2021 0.019* 0.011*
[0.001, .] [0.001, 0.083]

Kleibergen-Paap F statistic 3.882 4.816
Number of municipalities 5560 5560

Mesorregion FE ✓ ✓
Microrregion FE ✓
Full set of controls ✓ ✓

Excess mortality in 2021 instrumented by the net covariance between leave-one-out
monthly death shares at the national level and city-level monthly average wind. Clus-
tered errors at the level of the FE’s for the two specifications. Given the weakness of
the instrument in the latter cases, I present Anderson-Rubin confidence intervals and
p-values. For each specification, I include the full set of controls as per appendix (9.4).
The dot in the mesoregion FE specification’s confidence set indicates that the null of the
coefficient being equal to 0 for some positive number cannot be rejected for all positive
numbers.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.2 Using WDT instead of NWDT

Table 6: Impact of excess mortality on PT vote share (IV)

Dep. var.:
Difference in PT vote share (2022-2018)

Excess mortality 2021 0.050*** 0.017*** 0.038*** 0.011*
[0.029, 0.135] [0.007, 0.063] [0.017, 0.187] [0.001, 0.073]

Kleibergen-Paap F statistic 7.9 6.71 5.687 5.088
Number of municipalities 5562 5562 5560 5560

Mesorregion FE ✓ ✓ ✓ ✓
Microrregion FE ✓ ✓
Full set of controls ✓ ✓

Excess mortality in 2021 instrumented by the raw (not netted from neighborhood averages) covariance between leave-one-out
monthly death shares at the national level and city-level monthly average wind. Clustered errors at the level of the FE’s for
all the specifications. Given the weakness of the instrument, I present Anderson-Rubin confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.3 Varying neighborhood sizes

Table 7: Impact of excess mortality on electoral changes (IV), varying neighborhood size

Difference in PT vote share (2022-2018)

Panel I: neighborhood size 20

Excess mortality 2021 0.011 0.007 0.008 0.007
[-0.005, 0.061] [-0.003, 0.033] [-0.009, 0.089] [-0.003, 0.037]

Kleibergen-Paap F statistic 6.0 6.20 5.074 5.975

Panel II: neighborhood size 40

Excess mortality 2021 0.017* 0.010* 0.012 0.009
[0.000, .] [-0.001, 0.053] [-0.006, .] [-0.003, 0.063]

Kleibergen-Paap F statistic 5.5 5.55 4.428 5.037

Panel III: neighborhood size 80

Excess mortality 2021 0.025** 0.013** 0.017* 0.011*
[0.006, .] [0.001, 0.066] [-0.001, .] [-0.001, 0.084]

Kleibergen-Paap F statistic 5.1 5.53 3.934 4.830

Panel IV: neighborhood size 100

Excess mortality 2021 0.027*** 0.013** 0.019* 0.011*
[0.007, .] [0.001, 0.066] [0.000, .] [-0.001, 0.084]

Kleibergen-Paap F statistic 5.1 5.57 3.882 4.816

Panel V: neighborhood size 150

Excess mortality 2021 0.031*** 0.014** 0.023** 0.012*
[0.010, .] [0.001, 0.081] [0.002, .] [-0.001, .]

Kleibergen-Paap F statistic 4.7 5.19 3.577 4.433

Mesorregion FE ✓ ✓ ✓ ✓
Microrregion FE ✓ ✓
Full set of controls ✓ ✓
Number of municipalities 5562 5562 5560 5560

Excess mortality in 2021 instrumented by the covariance between leave-one-out monthly death shares at the national level
and city-level monthly average wind, net of neighbordhood averages of varying size. Clustered errors at the level of the FE’s
for all the specifications. Given the weakness of the instrument, I present Anderson-Rubin confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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Figure 11: Coefficient of interest for various neighborhood size definitions

42



9.8.4 COVID case and death rates as main independent variable

Table 8: Impact of COVID case and death rates on electoral changes (IV)

Dep. var.:
Difference in PT vote share (2022-2018)

Panel I: COVID death rate as main independent variable

Covid death rate 2021 0.089*** 0.036*** 0.086*** 0.033*
[0.049, 0.260] [0.013, 0.101] [0.033, .] [-0.001, .]

Kleibergen-Paap F statistic 7.4 7.45 3.300 3.484
Number of municipalities 5562 5562 5560 5560

Panel II: COVID case rate as main independent variable

Covid case rate 2021 0.002*** 0.001*** 0.002*** 0.001
[0.001, 0.005] [0.001, 0.022] [0.001, 0.015] [., .]

Kleibergen-Paap F statistic 10.6 3.75 5.102 2.464
Number of municipalities 5562 5562 5560 5560

Mesorregion FE ✓ ✓ ✓ ✓
Microrregion FE ✓ ✓
Full set of controls ✓ ✓

COVID death and case rates in 2021 - defined as city deaths and cases per thousand - instrumented by the (non-net)
covariance between leave-one-out monthly death shares at the national level and city-level monthly average wind. Clustered
errors at the level of the FE’s for all the specifications. Given the weakness of the instrument, I present Anderson-Rubin
confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.5 Presidential runoff results in the subsection of states in which incumbent
ran for re-election

Table 9: Impact of excess mortality on worker’s party vote-share (IV)

Dep. var.:
Difference in PT vote share (2022-2018)

Panel I: effect in states with governors running for re-election

Excess mortality 2021 0.026*** 0.012**
[0.009, 0.117] [0.003, 0.051]

Kleibergen-Paap F statistic 6.549 6.172
Number of municipalities 4384 4384

Panel II: excluding Bolsonaro-aligned governors

Excess mortality 2021 0.031*** 0.017***
[0.013, 0.193] [0.005, 0.099]

Kleibergen-Paap F statistic 5.690 5.016
Number of municipalities 3915 3915

Mesorregion FE ✓ ✓
Microrregion FE ✓

Excess mortality in 2021 instrumented by the net covariance between leave-one-out monthly death
shares at the state level and excess wind. Clustered errors at the level of the FE’s. Given the weak-
ness of the instrument, I present Anderson-Rubin confidence intervals and p-values. Bolsonaro-
aligned governors are defined as those from Republicanos and PP.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.6 Alternative measure of excess deaths

Table 10: Impact of excess mortality on electoral changes (IV)

Dep. var.:
Difference in PT vote share (2022-2018)

Excess mortality 2021 0.025*** 0.012**
[0.007, 0.121] [0.003, 0.043]

Kleibergen-Paap F statistic 6.352 7.126
Number of municipalities 5562 5562

Mesorregion FE ✓ ✓
Microrregion FE ✓

Excess mortality in 2021 is defined here as deaths above the three-year average number
of deaths in each city from 2017 to 2019 (I exclude 2020 since the pandemic had already
started then). I instrument it with the net covariance between leave-one-out monthly
death shares at the national level and city-level monthly average wind. Clustered errors
at the level of the FE’s for the two specifications. Given the weakness of the instrument,
I present Anderson-Rubin confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.7 Using first round results

Table 11: Impact of excess mortality on electoral changes (IV)

Dep. var.:
Difference in PT first round vote share (2022-2018)

Excess mortality 2021 0.039** 0.023** 0.032* 0.019*
[0.005, 0.390] [0.005, 0.131] [-0.003, .] [0.001, 0.177]

Kleibergen-Paap F statistic 5.1 5.57 3.882 4.816
Number of municipalities 5562 5562 5560 5560

Mesorregion FE ✓ ✓ ✓ ✓
Microrregion FE ✓ ✓
Full set of controls ✓ ✓

Excess mortality in 2021 instrumented by the net covariance between leave-one-out monthly death shares at the national
level and city-level monthly average wind. Clustered errors at the level of the FE’s for all the specifications. Given the
weakness of the instrument, I present Anderson-Rubin confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.8 Controlling for the 5-year moving average of NWDT

Table 12: Impact of excess mortality on electoral changes (IV)

Dep. var.:
Difference in PT vote share (2022-2018)

Excess mortality 2021 0.026*** 0.013** 0.018* 0.011*
[0.009, 0.135] [0.003, 0.061] [0.001, .] [-0.001, 0.089]

Kleibergen-Paap F statistic 5.9 5.84 4.080 4.647
Number of municipalities 5562 5562 5560 5560

Mesorregion FE ✓ ✓ ✓ ✓
Microrregion FE ✓ ✓
Full set of controls ✓ ✓
5-year moving average of NWDT ✓ ✓ ✓ ✓

Excess mortality in 2021 instrumented by the net covariance between leave-one-out monthly death shares at the national
level and city-level monthly average wind. Clustered errors at the level of the FE’s for all the specifications. Given the
weakness of the instrument, I present Anderson-Rubin confidence intervals and p-values.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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9.8.9 Main results by population quintile

Table 13: Impact of excess mortality on electoral changes (IV), by population quintile

Dep. var.:
Difference in PT vote share (2022-2018)

Excess mortality 2021 ×PopQuint1 0.049*** 0.015* 0.040** 0.012
(0.018) (0.008) (0.018) (0.008)

Excess mortality 2021 ×PopQuint2 0.051** 0.014 0.040* 0.010
(0.021) (0.009) (0.021) (0.009)

Excess mortality 2021 ×PopQuint3 0.063*** 0.019* 0.049* 0.013
(0.024) (0.011) (0.025) (0.011)

Excess mortality 2021 ×PopQuint4 0.055*** 0.017* 0.043** 0.011
(0.020) (0.009) (0.022) (0.009)

Excess mortality 2021 ×PopQuint5 0.055*** 0.016* 0.043** 0.011
(0.020) (0.009) (0.021) (0.009)

Anderson-Rubin p-values .0004 .0731 .0171 .3812
Number of municipalities 5562 5562 5560 5560

Mesorregion FE ✓ ✓ ✓ ✓
Microrregion FE ✓ ✓
Full set of controls ✓ ✓
Population quintile FE ✓ ✓ ✓ ✓

The interaction between Excess mortality in 2021 and population quintiles is instrumented by the (non-net) covariance
between leave-one-out monthly death shares at the national level and city-level monthly average wind, interacted with
population quintiles. Clustered errors at the level of the FE’s for all the specifications. Given the weakness of the instrument,
I present Anderson-Rubin p-values testing the hypothesis that the instrumented terms’ coefficients are jointly equal to 0.
PopQuint1 has a mean population of roughly 3000 and PopQuint5, 150000. P-values for each individual interaction should
be interpreted with caution as they are not robust to weak instrumentation.
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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